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1. Introduction

The classical Nelson inequality [9]

/p " 1/2

where 1 < q < p < -. x.y e IR, and s = ((q-l)/(p-l)) , and its extensions

play a fundamental role in the theory of hypercontractive operators [1.4,12],

convolution inequalities [11]. logarithmic Sobolev inequalities [4]. stochastic

Ising models [5] and related subjects in harmonic analysis, statistical

mechanics and quantum physics, to name just a few areas of great importance

nowadays.

Some more sophisicated counterparts of Nelson's inequality were recently

applied in the intensively developing theory of multiple stochastic integrals,

random multilinear forms and stochastic chaoses, topics originated with Wiener

[13] in the late 30's. Using some properties of hypercontractive operators,

thBorell [2] showed that all p norms, p 2, of Hilbert space valued polynomial

chaoses in independent random variables are comparable, generalizing a fortiori

classical results of Marcinkiewicz. Paley and Zygmund [8,10].

Furthermore, this concept became a basic part of a construction of a

stable multiple stochastic integral due to Krakowiak and Szulga [7]. A notion

of hypercontractive random variables was introduced for this purpose, having

also an intrinsic interest.

Following the key feature of the Nelson inequality, a random variable 0 is

called hypercontracttve with indices pq > 0 in a normed space X if there

.-. -exists a constant s such that

(1.2) (E((llx + seyllP)lI/ p  (Elix + @yllq)l/q

for all x,y E X; 0 E HC(p.qX; s) in short.

For example. Borell's extension of (1.1) ([2]) says that for a Bernoulli

1
random variable c taking the value +1 or -1 with probability -. a 6

IIC(p~q.,x s ) in any normed space X. where 1 < q < p < ".
p.q

Ev % %
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By a central limit theorem argumenr a symmetric Gaussian random variable

-- e HC(pq.X; s ) with the same parameters p.q and s (cf. also Nelson,.'"p~q P~q

[9]).

The number s is the best possible constant for T and a. Moreover. q_p-q

must be greater than 1. This is obvious in case of a Bernoulli random variable

because, for t > 0.

[1 if q 1.
• .°E ll + t lq

Eli.'j> 1 if q > 1.

In case of a Gaussian random variable -Y we have, for 0 < q I ( p and Itl < 1.

Ell + q < 1 q(q-l)/2 T
2  {lil 1} + const e-/t

.'% Ell + t-{lp > 1 + p(p-l)/2 Ei 1{ i l}t .

The latter inequalities are due to S. Kwapien.

An a-stable symmetric random variable is hypercontractive in an arbitrary

normed space if I < q < p < a < 2 (Krakowiak and Szulga [6]). Although this is

an attribute of a more general class of probability distributions (ibtdem)

integrability and limitation to parameters q > 1 seemed like the prerequisite

conditions.

We show in this paper that a-stable symmetric random variables are

hypercontractive for all a.p.q. with 0 ( q < p < a ( 2. in any normed space.

2. Properties of hypercontractive random variables

For a p > 0 and a Banach space X we denote by L (X) the Banach (Frkchet,
p

. if p ( 1) space of X-valued random variables 0 such that o1.p= (EllI11)

< -. A function F=Fk: Nk - X, k > 1, is called tetrahedral if F vanishes

outside the "tetrahedron" Dk = {1k = ('I ..... k): 1 < iI < ... < ik0. We

define a homogeneous polynomial of degree k on R by

<Fk; ()k> = . 1 k) ti  .t (ti IR
.- ~~ ~ 6k~ F -k  1 ik' i

i.1k D k

(by convention, F0 f X).

The class of hypercontractive random variables is closed under certain

V.."m , ,'' . ' e
= .
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algebraic operations and under weak limits of its distributions. The latter

-. statement follows immediately from the definition of weak convergence of

probabiliiy measures (see also proof of Proposition 2.2 in [6] for more

details). The precise meaning of the first statement is contained in the

following result (Krakowiak and Szulga [6]):

- Theorem 2.1. Let 0 < q p < -. Q= (0) be a sequence of independent

p-integrable random uariables. and F F be finitely supported tetrahedral
01 1k

functions with values in X. If 9 e HC(p.q,X;s,) for each J=1.2.... then

(2.1) n k n k
(2.1) 2I U kF (so) >11 H1 k <F k;(9) >11q

k-1 k=l

whuere sO (s i).

In other words, the hypercontractivity is a hereditary feature under forming

polynomials of several variables (not necessarily homogeneous). In particular,

using linear forms, we obtain immediately the following statements:

OROLLARY 2.2 If (O) is a sequence of i.i.d. random variables and each 0. e

HC(p,qX;s) then the space of all linear combinations of 0 's with X-valued
1

coefficients consists of hypercontracttve random variables, i.e.

{i x. 0 (x) e X - HC(p.q.X~s).

--OROLLARY 2.3 If 8 6 HC(p.qX;s) and 8 belongs to the domain of normal

attraction of a random variable f then f e HC(p,q,X;s).

Therefore, by the central limit theorem argument, we obtain the following

corollary

COROLLARY 2.4 (observed by Dr. Rama-Murthy). If 9 e HC(p.q,X;s) for some s 0 C)

and F62 < - then q > 1.

Notice that if 0 is a hypercontractive random variable then necessarily

Isl < 1 and El Ix + yo I.

-"-.
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By homogeneity of the norms appearing in the definition of

hypercontractivity it suffices to consider only vectors x with lixil = 1

Except a limited set of random variables, we may also assume that H[Yll l 1;

the precise meaning of this remark is explained below.

LEMMA 2.5 Suppose that

inf{Ejx + yol q; lIxl = 1. Ilyll 1) > 1

and (1.2) is satisfied for aft y with Ilyll 1. Then 0 e HC(p,q.X;s) for some

s $0.

PROOF. Assume that lixil = 1. Let t = IlYll 1 and q > 0. Since

lim (Ilx + yOi - )/t II11

there is a positive constant c such that

Ill+t8llq 1 + ct 11 q11
q q

Let r min(l.p). We solve the following inequality with respect to s,

uniformly for t > 1,

(2.2) lix + syOll /ilx + yOl1 q (l+srttllOllr)l/r/(l+ctlOllq) ( 1.
p pq

Define s by

= inf ((1 + ctllellq)r - 1) /r/(tllOII )
= ((1 + clIlI)r 1)/r 1181 p > 0

and check that all s, Isl sI. satisfy (2.2), which completes the proof. 01

LEMMA 2.6. For any normed space X, any q < I and a symmetrtc random vartable 0

e L q we have

df
(2.3) 6q (t) = inf(EIlx + yol q : Ilxi = 1. I lyll t} El +toGq .

PROOF. The inequality "" is obvious.

" Let xy e X with lixil = Ilyll = I and x* and y* be functionals on X with

norm 1 such that <x .x> = <y .y> 1 1. Put a = <x .y> and b = <y .x>. Then

6q(t) inf {Emax(il + aO1q . lb + 0 1
q : 0 agl. Ibl _}

4.q

. % Z
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Since. for a Bernoulli random variable a independent of 0.

ElIx + yOli q = E0Eallx + alolylI q .

it is enough to prove that for every t > 0

inf (E a.x(li + actl q , lb + at 1 q): O<a<l, lbl 1} E tl q

Observe that, for t _ 1 and 0 a < 1.

Ell + ata q > Ell + tcl q > inf Elb + talq .

lbl _l

Therefore, for t < 1.

inf inf E mx(l + ata1q, lb + tal q )

a b

> inf inf max(Ell + ato q. Elb + tc~q)
a b

max (inf Ell + atoaq  inf Elb + t q

a b

> max (Ell + tcl q . inf Elb + tcy q )

b

,-Eli + ta, .

Finally, for t > 1, we have

inf Ell + ata I q 2 q-I•
a

Also, for a fixed t > 1. the function b - Elt + cbjq is decreasing for

b 6 [0,1], hence

inf Elb + tol q > Ell + t >1q _ q- 1 . 0

b

REMARK. In the case q 1 the quantity 6 q(t), defined in (2.3). depends

essentially on the geometry of the normed space X (cf. e.g. [14]).

If a random variable 0 is integrable and q 1 then the necessary and

sufficient condition for hypercontractivity of 0 is the finiteness of the

" function

(2.4) V(s) sup f (st)/{(1 + fq(t) + t(t))p/q  1}.

tO P q

where

f (t) = Elt~lp I{It0l > 2}.

p(t

p(t) inf (Ellx + t yl 12 - x)I{It0jol 2}: Ilxll=llyll=l)

d'',%
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(Krakowiak and Szulga [6]). Note that p(t) may be replaced by any function

w'(t) with the same asymptotic behavior at 0. For example, if X is a Hilbert

space then one may choose

:i'(t) = EltOI2t{ItoI 2}

This criterion enables us to give an example of a non-hypercontractive

random variable for certain parameters p and q, 1 < q < p < 2.

EXAMPLE. Let 0 be a symmetric random variable such that

N(x) = P(1O1 > x) = x-a (logx)c , x > e,

where a > 1 and c > 1. Writing f(t) Z g(t) whenever lim f(t)/g(t) a
t-4O

0 < Ic < -, we derive the following asymptotic behavior of f and p1 by a

p

* routine computation

N(l/t) if p < a,

f (t)
p N(l/t)log(l/t) if p = a.

n(l/t) if a < 2,

p(t) Z 2
t ifa 2.

Therefore V(s) = o for any s 0 and for all pq such that 1 < q < p = a < 2.

In other words, for these parameters,

0 ft HC(pq,R;s).

Unfortunately, the use of the criterion (2.4) is restricted to integrable

random ;'ariables and to moments p,q > 1.

In the following sections a straightforward computation proves the

hypercontractivity of all a-stable symmetric random variables, 0 < a < 2, in an

arbitrary normed space, and, a fortiort, of all random variables whose

distributions are weak limits of random a-stable multilinear forms (cf.

discussion at the beginning of this section).

O4,
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3. Hypercontractivity on the real line

*¢ Let f be a symmetric a-stable random variable. The aim of this section is

to evaluate the absolute pth moment of the transformed a-stable random variable

x + yf. The exact integral formula

EIx + y Ip = 2F(l+p)sin(rp/2) 1.0(1-cos v exp(-Ivyl a))v-P-ldv

(cf. e.g. Zolotarev [15], p. 63) is too complex for our purposes, so we prefer

to switch from f to an appropriate random variable from its domain of normal

attraction.

THEOREM 3.1 Let 0 < q < p < a. Then every a-stable symmetric random variable

e HC(pq,IR;s) for some s = s(pq,a) > 0.

PROOF. By virtue of Corollary 2.3 it is enough to prove that 8 e HC(p,q,E;s)

for some s > 0, where 0 is the random variable belonging to the domain of

normal attraction of [ with the density
1 0 if lxI < 1.

• (3.1) f(x) {a-2 Ixla if lxI 1.

Since L -norms are homogeneous and 0 is symmetric, it suffices to evaluate

the function t -*Eli + tOl pl t > 0. Define

'?" (u) = (11 + ulp  + I' - ulp)/2.
p

We check that

Ell + tOlp = at' fp (U)u-1-a du
t p

ta ,0 -1-a
(3.2) = 1 + at ft (0 (u) - 1)u du

tp
a=I + a t + g (t),

pla p, c

where

gp (t) = ataJ'(l---( .. du,

00"- 1-a
a p~a =afo(Op(u) - I)U du

= af1(0,p(u) - li)u--a + ((U)U -p - 1)u- +a }du

= p/(a - p)(1 - h(pa)).

The two-parameter function h is given by the formula

a.J

I%



h(p,a) = a(a - p)/p ('u)) )du.

We claim that h(p.a) < 1 for 0 < p < a. If p > 1 then h(pa) < 0 because

P5 (u) > 1 for p > 1 and u < 1; if p=l then h(pa) = 0 because 4'l(u) = 0 for

U < 1.

For the remaining p's. observe that the function p - h(p,a) is decreasing

on the interval (O.min(l,a)) and

lim h(pa) = 1 ,(arl2)cotan (air/2).

P-0
Indeed, integrating the series

p 2k
1- 0 (u) - ,u 0 < U < 1.

p k=l 2ku

term by term, we obtain the following representation of the function h

-1.-l
0 h(pa) = a(a-p) 7 (1-p).. .(2k-l-p)((2k-a) + (2k+a-p) /(2k)!.

k=l

A routine calculation shows that p - h(pa) is a decreasing function if 0 < p <

min(l,a) and that

lim h(p,a) = 2 2/(4k 2_a2) = 1 - (ai/2)cotan(ar/2) < 1
P-0 k=l

(cf. e.g. Gradshteyn and Ryzhik [3]).

From the latter statement and from (3.2) we infer immediately that

(3.3) Eli + tel p > 1 for all t > 0.

Moreover.

(3.4) lim gp a(t)/t = p(p-2)a/(4-2a).
i t-40

Therefore there are positive constants a = a and b = b such that for all
p,a p,a

t,O ( t < 1, we have

aa
(3.5) 1 + at Eli + tel p < 1 + bta .

The latter estimate yields the Inequality

Ill + stOll I Il1 + toll
df 1/a

valid for all t,O < t < 1. and all s. IsI so (b/a)

We complete the proof by choosing s min(sOSl), where s1 appears in

Lemma (2.5).

-l .
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In the following section we extend the above result to an arbitrary normed

space.

4. Hypercontractivity in normed spaces.

The proof of the main result is based on some elementary inequalitis.

LEMMA 4.1. Let c > 0 and p > 0. Define

f (v) = I(' + v)p - pvj, -1 v < c.
p

Then

(1 + v) p - I - pv if p _ 1,
fp(t) =

S() pv -(+ v)p + 1 if p 1,

and there are constants d .D > 0 such that for acd v, -1 < v < c,

d < fp (v)/v 2 < D

We omit the routine proof.

For fixed xy E X, lxil - 1, I lYll- c and a symmetric random variable ri

we define a stochastic process V(s), s e [0,1],

V(s) = IIx + snyll - 1

with values in [-1,c].

LEMMA 4.2 For a symmetric tntegrable random variable ij the following

contractions hold true

(4.1) V(s) s V(1);

(4.2) EV2(s) < s2 EV2 (l) + 4s EV(1).

PROOF. (4.1) follows from the convexity of the norm. Since

Elix + siqyI1 2  EIjs(x + rny) + (1-s)x11 2

< E(s IIx + 77y + 1-s)2

= E(sV(l) + 1)2

= s2EV2 (1) + 2sEV(1) + 1.

and

4I

-" , , .' .. - ., " .- -... ' ,... '-. ...'-,.. . .-. .. -..-... .....- .. --. .- ... ."."•..- . - ... .-. .... . . ..- . ., .
@; : ~~~~... .. ...... ,... .. ,,..,........... .... ...----- .. , .,.- ,"-......-,



* 10

Elix + sryll EIIx - sriyll

EIl(1+s)x - s(x + nly)il

(l+s) - sE Ix + ryI

1 - sEV(1)

* "then

EV2 (s) = E(Ilx + sry 112 - 211x + s--yI I + 1)
%99

< (s2EV2(1) + 2sEV(1) + 1) (2 - 2sEV(1)) + 1

. s EV (1) + 4s EV(1). D

LEMM. 4.3 For every a > c,

(4.3) (a - 1)q > 1 + ((c - 1)q - 1)/c q aq

if c > 2, and

(4.4) (1 + a)p < 1+ (1 + )-) ap .
C

- PROOF. Omitted. 0

LELXA 4.4 There exists a constant c > 2 such that for every x.y e X. with lixil

=1 and lHH t 1.

E(lix + oy q - 1),Ito, _ c} > kc ta.

PROOF. From Lenna 2.2 and Theorem 3.1 we infer that

E(lix + oyI q - 1)1{to, _ c}

E(I1 + ot q
- 1)lIt( , , }

-a c -a-1
= at .ft(El1 + - 1) u du

> at a fo(Ea11 + Cuq - 1) u du

a

SLEMMA 4.5. Let 0 have the density (3.1). Then

E Etol2 1{ toC c) a C2-a/( 2 -a)ta;

EltOIp i(ItOe > c} = acP-a (a-P)ta.

PROOF. Omitted. 0

,,
. . . . . .. . . . V.-.-P , A -
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Now we extend the main result of the previous section to an arbitrary

normed space.

THEOREM 4.5. For every p,q.O < q < p < a < 2, there is s > 0 such that every

symmetric a-stable random variable f E HC(p.qXos), where X is an arbitrary

normed space.

PROOF. It suffices to show that the random variable 0 with density (3.1) (see

the proof of Theorem 3.1) is hypercontractive. We may and do assume that q < I

and xy 6 X with lIxIl = 1, IIll = t < 1.

We set up directly a convenient decomposition

EIx + soyllP =

1 + E(lix + seyjlp - l)ljt0o _ c) + E(Ijx + sOy11
p - 1)1(ItOl > c)

= 1 + A (t) + B (t).
p p

where c results from Lemma 4.4.

In order to find the needed upper estimate of A (t) we apply Lemma 4.1.
p

using notation and contractions from Lemma 4.2 with 17 = ai{ItOI _ c}, as

fol lows

A (t) = E(I + V(s)) p - 1
p

= E(pV(s) + sgn(p-1) f (V(s))
p

< ps EV(l) + (p-l)D p EV2 (s)

< ps EV(l) + (p-l)+D (s2EV2 (1) + 4sEV(1))
p

= s(p + 4(p-l)+)EV(l) + (p-1)+D s 2 EV2 (1)
P

= s(p + 4(p-l)+)/q (E(l + V(q))q - 1 + f (V(1)) + (p-l) + D s2EV2(1)q P

s(p + 4(p-1)+)/q (E(1 +V(1)) q _ 1) + s K EV2(1)
Skp q E(Ilx + )y(,to - )It c} + sK Eto 2 { (Ito, c,
.- P'q E + p.q

where k and K are suitable positive constants.p.q P,q

By Lemma 4.3 and 4.5 there exists a constant L such that

B (t) s p L E({[x + oy{ Iq - 1)1{ ItoI > c}.
p p,q

K El to21(ltol c) L -E(llx + eyl - l)l{to, > c).
o Pq Pq

'.-. . . .. . . ., . . . . . . . . . . . . . . , . . . . . . . . . . .. . . ., . . . . . . .. . . . . .
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We complete the proof by selecting a number s such that

min(p, 1
-s L < p/(2q).

This yields the concluding inequality

(El lx + soy [P)l/p < (1 + p/q (ElIx + yjq - 1))l/p

. Ejlx + 9y[[ q )l/q . 0

(DROLLARY 4.6. Let M be a symmetric a-stable measure, 0 < a < 2 tndependentLu

scattered on the interval [0,T], and let f., be function on [OT]3 with values

in a Bach space X. integrabLe with respect to the product random measures Mi,

j=l, ... ,n (as defined in [7]). Put

n
( (4.5) 0 = .f f dMj--. ~J=l LOT j

Then 0 is a hypercontractiue random variable in X with parameters

p.q (q < p < a) and sn, where s = s(p.q,a) appears in Theorem 4.5. Note that

an a-stable polynomial

n
S=2 a (k 1 . kj)fkl'k

j=l k1 .  k. j

is a special case of (4.5).

.

bo f-

<-.-z



9 13

References

1. Bonami, A., Etude des co6fficients de Fourier des fonctions de LP(G). Annal.
Inst. Fourier 20. 335-402 (1970).

2. Borell, C., On polynomial chaos and integrability. Probability Math. Statist.
3, 191-203 (1984).

3. Gradshteyn, I.S. and Ryzhik, I.M., Table of Integrals, Sertes and Products.
Academic Press 1980.

-1. Gross, L., Logarithm Sobolev inequalities. Amer. J. Math. 97, 1061-10S3
(1973).

;. Holley, R. and Stroock. D.. Logarithm Sobolev inequalities and stochastic Isin<
model. J. Statist. Physics. 46, 5/6, 1159-1194 (1987).

6. Krakowiak, W. and Szulga, J., Hypercontraction principle and random multilinear
forms. Wroclaw University Preprint #24 (1985) and CWRU Preprint series #85-3-1
(1985) (to appear in Probability Theory and Related Fields).

7. Krakowiak, W. and Szulga, J.. A multiple stochastic integral with respect to a
strictly p-stable random measure. CWRU Preprint Series #86-48 (to appear in
Ann. Probab.)

S. Marcinkiewicz, J. and Zygmund, A., Sur les fonctions independantes. Fundamenta
Math. 29, 60-90 (1937).

9. Nelson, E., A quartic interaction in two dimensions. In: Mathematical theory
of elementary particles, 69-73, Cambridge, Mass., M.I.T. Press (1966).::.::

10. Paley, R.E.A.C. and Zygmund, A., A note on analytic functions on the unit
circle. Proc. Cambridge. Phil. Soc. 266-272 (1932).

11. Ritter, L.D., Convolution inequalities on finite cyclic groups and the

pseudomeasure norm. Proc. Amer. Math. Soc. 91, 589-592 (1984).

12. Weissler, F.B., Logarithmic Sobolev inequalities and hypercontractive estimates
on the circle. J. Functional Anal. 37, 218-234 (1980).

13. Wiener. N., The homogeneous chaos. Amer. J. Math. 60, 897-936 (1930).

1-1. Woyczynski, W.A., Geometry and martingales in Banach spaces. In Lecture Notes
in Math. #472, pp. 229-276, Springer Verlag, Berling-Heidelberg-New York 1975.

15. Zolotarev, V.M., One-dimensional Stable Dtstributtons.AMS, Providence, Rhode
Island, 1986 (translated from Russian).

.,,

0i

. % - .

"2r ,. ' ..I. ? .. # .r J .o .. " ." J . " ' . '¢ ", ' . . '' ' ,i' # ' . '. ',r',,,,, ,. . . " " ..". . ..". . -," J -. .2.



24b

fii
iF1

.~0 0 0 Is le le 0 0 le 0 le 0 0s "M

y. N -1 Z-

I::'~* *** *.*-~'*-/* - *~ .. - *


